5

BIND 9 Security ~°

(Part 3 - eBPF - extended Berkeley Packet Filter)

Carsten Strotmann and the ISC Team

Welcome

Welcome to part three of our BIND 9 security webinar
series

5

In this Webinar

The Berkeley Packet Filter

eBPF Architecture

nstrumenting the Linux Network Stack
nstrumenting BIND 9

Packet Filtering with eBPF

Hands-On lab

The Berkeley Packet Filter

z
Q
o
3
B
2
©
N
IS)
I
3
]
3
o
)
<
@
@
3
e
Q
g
3
(73
3
=
c
3
5
o

What is BPF/eBPF?

e eBPF is the extended Berkeley Packet Filter
infrastructure inside the Linux kernel

e eBPF is a further development of the Berkeley Packet
Filter technology

https://en.wikipedia.org/wiki/Berkeley Packet_Filter

172

Visc

https://en.wikipedia.org/wiki/Berkeley_Packet_Filter

The eBPF idea

e eBPF allows the administrator to execute sandbox

programs inside the operating system kernel
= eBPF is used to extend the capabilities of the kernel safely,
securely and efficiently without modifying the kernel source code
or loading kernel modules
= eBPF can monitor and manipulate network packets as well as
other data inside Linux kernel
= eBPF programs are not kernel modules, you don't need to be a

Kernel developer to work with eBPF
o but some C programming knowledge is helpful

L
)

5

All content © 2021 Internet Systems Consortium, Inc.

eBPF use cases

e Use cases for eBPF
= Network security (advanced firewall functions)
= Host security
= Forensics
= Fault diagnosis
= Performance measurements

e eBPF is available on modern Linux systems (Kernel
3.18+) and is currently being ported to the Windows
operating systems ported by Microsoft

172

‘@ All content © 2021 Internet Systems Consortium, Inc

Origins of BPF

e The original BSD Packet Filter (BPF) has been
designed by Steven McCanne and Van Jacobson at
Lawrence Berkeley Laboratory
(https://www.tcpdump.org/papers/bpf-usenix93.pdf)

= BPF has been ported to almost all Unix/Linux and some non-Unix
operating systems

= BPF is the base technology for some well known network sniffing
tools such as tcpdump and Wireshark

5

https://www.tcpdump.org/papers/bpf-usenix93.pdf

BPF operation using tcpdump as an example

 When using a BPF-enabled tool, the filter code is

compiled into bytecode for the BPF in-kernel VM and

loaded into the kernel
= The operating system kernel will execute the filter program for
every network packet that traverses the network stack
= Only packets that match the filter expression will be forwarded to
the userspace tool, tcpdump in this example

= BPF helps limiting the amount of data that needs to be sent
between kernel and user space

L
)

BIND Q)

BPF operation using tcpdump as an example

tcpdump can be instructed to emit the source code

for a tcpdump filter expression

tcpdump -d port 53 and host 1.1.1.1
Warning: assuming Ethernet

(000)
(001)
(002)
(003)
(004)
(005)
(006)
(007)
(008)
(009)
(010)
(011)
(012)
(013)
(014)
(015)
(016)
(017)
(018)
(019)

5

1dh
jeq
Jjeq
1db
jeq
jeq
Jjeq
1dh
jset
1dxb
1dh
jeq
1dh
jeq
1d
jeq
1d
jeq
ret
ret

[12]
#0x86dd
#0x800
[23]

#0x84

#0x6

#0x11

[20]
#Ox1fff
4%([14]&0xf)
[x + 14]
#0x35

[x + 16]
#0x35

[26]
#0x1010101
[30]
#0x1010101
#262144

#0

jt
jt
jt
jt
jt

jt

jt
jt
jt

jt

19

14

14

18

18

jf
jf
jf

jf

12

19

16

19

All content © 2021 Internet Systems Consortium, Inc.

172

eBPF vs. BPF

e While BPF (or now called cBPF = classic BPF) filters
network packets inside the operating system kernel,

eBPF does also filter on
= Kernel systemcalls
= Kernel tracepoints
= Kernel functions
= Userspace tracepoints
= Userspace functions

eBPF and the Linux kernel

e The basic eBPF was introduced into the Linux kernel

In version 3.18
= since then, most new kernel release implemented new eBPF
functions
= Linux distributions might have backported eBPF functions into
older LTS kernel (Red Hat/Canonical/Suse)
= Overview of eBPF functions by Linux kernel version:

https://github.com/iovisor/bcc/blob/master/docs/kernel-
versions.md

All eentent ® 2021 Internet S8ystems Consertium, Ine,

https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md

The eBPF Architecture

z
Q
o
3
B
2
©
N
IS)
I
3
]
3
o
)
<
@
@
3
e
Q
g
3
(73
3
=
c
3
5
o

5

The eBPF VM

 eBPF programs are compiled for a virtual CPU

e The code is loaded and verified in the Linux kernel

 On main architectures, the eBPF code is re-compiled
into native code (Just in time compiler)

XDP - express data path

e The express data path (XDP) inside the Linux-Kernel is
an infrastructure to gain low level control over network

traffic
= side-stepping the normal kernel network stack flow
= eBPF programs can be loaded into the eXpress Data Path (XDP)

L
)

XDP / eBPF hardware offloading

e XDP eBPF can be loaded into different level of the

Linux kernel network stack

= Offload XDP: directly into the network hardware (ASIC/FPGA,
needs support by the network hardware, for example Netronome
NIC)

= Native XDP: into the network driver (low level Linux kernel code,
requires support by the driver)

= Generic XDP: into the Linux kernel network stack (less
performance, but universally available)

L
)

ﬁ

XDP programs

b

Userspace

Application

-

Kernel
TCP/IP stack
- (TC-BPF)

cheduler |=-

~

XDP /7 eBPF execution environments

BIND Q)

>
e

=]

-

-

N\

Hardware

L

-

eBPF
programs

All content © 2021 Internet Systems Consortium, Inc.

172

XDP functions

e XDP programs can

= read network packets and collect statistics

= modify the content of network packets

= drop selected traffic (firewall)

= redirect packets to the same or other network interfaces
(switching/routing)

= pass the network packet to the Linux TCP/IP stack for normal
processing

L
)

XDP vs DDoS attack ——

e XDP can discard unwanted traffic very early in the
network stack, defending against DDoS attacks

@ Path Network
@path_network

Massive #DDoS with 650Gbps of volumetric UDP, O
impact to the clients network. #ebpf #xdp

Bytes blocked

0 bfg el Merde ™ frfe— 5 1
01:50 0200 0210 0220 02:30 02:40

TCP — UDP — other other 14 arista_acl

3:19 AM - Feb 25, 2021 - Twitter Web App

eBPF/XDP support in DNS software

e DNSdist (see Webinar Practical BIND 9 Management -
Session 3: Load-balancing with dnsdist) can directly
rate limit or block DNS traffic through eBPF and XDP

e The Knot resolver (since version 5.2.0) can bypass the
Linux TCP/IP stack and send DNS traffic direct to the
user space process (https://knot-
resolver.readthedocs.io/en/stable/daemon-bindings-
net_xdpsrv.html)

\ All entent ® 2021 Internet S8ystems Consertium, Ine,

https://dnsdist.org/
https://www.youtube.com/watch?v=M2IwdUji5ps
https://knot-resolver.readthedocs.io/en/stable/daemon-bindings-net_xdpsrv.html

Using eBPF

Vs

All content © 2021 Internet Systems Consortium, Inc.

172

eBPF tooling

 eBPF programs can be written in many ways
= Low level eBPF assembly code
= High Level compiler (using LLVM): C / GO / Rust / Lua / Python ...
= Special "scripting” languages: bpftrace

172

BCC

e BCC is the BPF compiler collection
= Website https://github.com/iovisor/bcc
= BCC compiles C or Python code into eBPF programs and loads
them into the Linux kernel

https://github.com/iovisor/bcc

BCC tOOIS Bmo@l

Linux bcc/BPF Tracing Tools

c* java* node* php* mysqgld_gslower
python* ruby* dbstat dbslower gethostlatency
| bashreadline memleak

calls uflow
opensnoop statsnoop uca.
syncsnoop uobjnew ustat

\\\ uthreads ugc

/’ sslsniff
filetop \
A filelife fileslower o + ’/ syscount
vfscount vfsstat Applications killsnoop
cachestat cachetop\\\ Runtimes execsnoop
dcstat desnoop ‘{" exitsnoop
mount snoop System Libraries pidpersec
p cpudist cpuwalk
trace » runglat runglen
argdist X R System Call Interface | E runqslgwer
funccount ~ —___,——”'—"cpuunclaimed
guncilzwer VFS * Sockets - deadlock
n n
staikioiniy Scheduler offcputime wakeuptime
profile y File Systems / TCP/UDP < offwaketime softirgs
. slabratetop
btrfsdist ’/,f”’//” :
btrfsslower \Volume Manager/ IP Virtual 4_.__—-—-—-""’ oomkill memleak
- shmsnoop drsnoop
ext4dist extdslower .) Memory
nfsslower nfsdist ‘ Block Device Net Device hardirgs
xfsslower xfsdist - criticalstat
zfsslower i i ttysnoo
vV iioier / / Device Drivers y P
mdflush p;5top biosnoop tcptop tcplife tcptracer
. biolatency bitesize tcpconnect tecpaccept tepconnlat 11cstat | CPUs
Other: tcpretrans tcpsubnet tcpdrop e
capable sofdsnoop tcpstates

https.//github.com/iovisor/bcc#tools 2019

5

All content © 2021 Internet Systems Consortium, Inc.

BCC Tool examples (1/2)

e Count syscalls from the BIND 9 process with

syscount
syscount-bpfcc -p “pgrep named” -i 10
Tracing syscalls, printing top 10... Ctrl+C to quit.
[07:34:19]
SYSCALL COUNT
futex 547
getpid 121
sendto 113
read 56
write 31
epoll wait 31
openat 23
close 20
epoll ctl 20
recvmsg 20

172

m All content © 2021 Internet Systems Consortium, Inc.

BCC Tool examples (2/2)

e Tracing Linux capability checks

capable-bpfcc | grep named

07:36:17 O 29378 (named) 24 CAP_SYS RESOURCE 1
07:36:17 O 29378 (named) 24 CAP_SYS RESOURCE 1
07:36:17 O 29378 (named) 12 CAP_NET ADMIN 1
07:36:17 O 29378 (named) 21 CAP_SYS_ ADMIN 1
07:36:17 O 29378 named 6 CAP_SETGID 1
07:36:17 O 29378 named 6 CAP_SETGID 1
07:36:17 O 29378 named 7 CAP_SETUID 1
07:36:17 109 29378 named 24 CAP_SYS RESOURCE 1

172

m All content © 2021 Internet Systems Consortium, Inc.

bpftrace

e bpftrace is a little language similar to awk or

dtrace
= Website https://bpftrace.org

e bpftrace programs subscribe to eBPF probes and
executes a function whenever an event occurs
(systemcall, function-call)

e bpftrace comes with many helper functions to
handle eBPF data structures

e bpftrace allows one to write eBPF programs in a
more concise way compared to BCC

\ All entent ® 2021 Internet Systems Consertium, Ine,

https://bpftrace.org/

N

5

Instrumenting the Linux Network Stack

5

BCC and bpftrace tools

e Literally hundreds of little eBPF programs exists to

look deep into the Linux network stack
= The BCC example tools
» The bpftrace examples
= Examples from eBPF books

gethostlatency

e The BCC tool gethostlatency measures the latency
of client DNS name resolution through function calls
such as getaddrinfo or gethostbyname

gethostlatency-bpfcc

TIME PID COMM LATms HOST

10:21:58 19183 ping 143.22 example.org
10:22:18 19184 ssh 0.03 host.example.de
10:22:18 19184 ssh 60.59 host.example.de
10:22:35 19185 ping 23.44 isc.org
10:22:49 19186 ping 4459.72 yahoo.co.kr

172

m All content © 2021 Internet Systems Consortium, Inc

netqtop

e netgtop - Summarize PPS, BPS, average size of
packets and packet counts ordered by packet sizes on
each queue of a network interface.

netqtop-bpfcc -n eth0 -i 10
Mon Nov 15 07:43:29 2021

TX
QueuelD avg_size [0, 64) [64, 512) [512, 2K) [2K, 16K) [1l6K, 64K)
0 297.82 2 48 1 4 0
Total 297.82 2 48 1 4 0
RX
QueuelID avg_size [0, 64) [64, 512) [512, 2K) [2K, 16K) [16K, 64K)
0 70.95 43 34 0 0 0
Total 70.95 43 34 0 0 0

5

tcptracer

e Tracing TCP connections showing source and
destination addresses and ports and the TCP state
(accept, connect, close)

tcptracer-bpfcc -p $(pgrep named)
Tracing TCP established connections. Ctrl-C to end.

T PID COMM IP SADDR DADDR SPORT DPORT
C 29404 isc-net-0000 4 127.0.0.1 127.0.0.1 41555 953
A 29378 isc-socket-0 4 127.0.0.1 127.0.0.1 953 41555
X 29404 isc-socket-0 4 127.0.0.1 127.0.0.1 41555 953
X 29378 isc-socket-0 4 127.0.0.1 127.0.0.1 953 41555
C 29378 isc-net-0000 4 46.101.109.138 192.33.4.12 43555 53
C 29378 isc-net-0000 4 46.101.109.138 192.33.4.12 33751 53
X 29378 isc-socket-0 4 46.101.109.138 192.33.4.12 43555 53
X 29378 isc-socket-0 4 46.101.109.138 192.33.4.12 33751 53
C 29378 isc-net-0000 4 46.101.109.138 193.0.14.129 38145 53
C 29378 isc-net-0000 4 46.101.109.138 192.33.14.30 40905 53
X 29378 isc-socket-0 4 46.101.109.138 193.0.14.129 38145 53
X 29378 isc-socket-0 4 46.101.109.138 192.33.14.30 40905 53

All content © 2021 Internet Systems Consortium, Inc.

tcpconnlat

e Display the connection latency for outgoing TCP
based DNS queries from a BIND 9 resolver (in this
example a query for microsoft.com txt, whichis
too large for 1232 byte UDP)

m isc-net-0000 is the internal name of a BIND 9 thread

tcpconnlat-bpfcc

PID COMM IP SADDR DADDR DPORT LAT(ms)
29378 isc-net-0000 4 46.101.109.138 193.0.14.129 53 37.50
29378 isc-net-0000 4 46.101.109.138 192.52.178.30 53 14.01
29378 isc-net-0000 4 46.101.109.138 199.9.14.201 53 8.48
29378 isc-net-0000 4 46.101.109.138 192.42.93.30 53 1.90
29378 isc-net-0000 4 46.101.109.138 40.90.4.205 53 14.27
29378 isc-net-0000 4 46.101.109.138 199.254.48.1 53 19.21
29378 isc-net-0000 4 46.101.109.138 192.48.79.30 53 7.66
29378 isc-net-0000 4 46.101.109.138 192.41.162.30 53 7.97
29396 isc-net-0000 4 127.0.0.1 127.0.0.1 53 0.06

172

‘@ All content © 2021 Internet Systems Consortium, Inc.

udplife

e A bpftrace script to trace UDP session lifespans
(DNS round trip time) with connection detail (by
Brendan Gregg, see link collection)

udplife.bt
Attaching 8 probes...

PID COMM LADDR LPORT RADDR RPORT TX B RX B MS
29378 isc-net-00 46.101.109.138 0 199.19.57.1 16503 48 420 268
29378 isc-net-00 46.101.109.138 0 51.75.79.143 81 49 43 13
29378 isc-net-00 46.101.109.138 0 199.6.1.52 16452 48 408 24
29378 isc-net-00 46.101.109.138 0 199.249.120.1 81 44 10 9

29378 isc-net-00 46.101.109.138 0 199.254.31.1 32891 64 30 273
29378 isc-net-00 46.101.109.138 0 65.22.6.1 32891 64 46 266

172

m All content © 2021 Internet Systems Consortium, Inc.

Server agnostic DNS augmentation using eBPF

e A master thesis by Tom Carpay (supported by NLnet
Labs)

= eBPF Query-Name rewriting
= |[n-Kernel DNS server agnostic response rate limiting (RRL)

e https://www.nlnetlabs.nl/downloads/publications/DNS-
augmentation-with-eBPF.pdf

https://www.nlnetlabs.nl/downloads/publications/DNS-augmentation-with-eBPF.pdf

Instrumenting BIND 9

z
Q
o
3
B
2
©
N
IS)
I
3
o
3
o
)
<
@
@
3
e
Q
g
3
(73
<3
=
c
3
5
o

Use case -> Forward logging

A BIND 9 DNS resolver has forward zones configured:

one "dnslab.org" {
type forward;
forwar ders { 1.1.1.1; 8.8.8.8; };

}i

e The BIND 9 logging subsystem, while very powerful,
does not support the logging of forwarding decisions

e Goal: Create a bpftrace script that writes out BIND 9
forwarding decisions

172

visc

BIﬁD@I
Step 1 - Use the foree source

e The BIND 9 source code is public, available on the ISC
gitlab service https://qitlab.isc.org

e A search through the source for forwarding finds the
function dns_ fwdtable findin
/1ib/dns/forward.c. This sounds promising:

5

https://gitlab.isc.org/

Step 2 - A proof of concept test

e The function dns fwdtable find takes a domain
name and returns 0 if the name must be resolved

through forwarding, and a value greater than O if not
= A quick bpftrace one-liner will validate that this indeed works:

bpftrace -e 'uretprobe:/lib/x86 64-linux-gnu/libdns-9.16.22-Debian.so:dns fwdtable find { print(retval)

172

‘@ All content © 2021 Internet Systems Consortium, Inc

Step 2 - A proof of concept test

root@ebpf-test:-# bpftrace -e 'uretprobe:/lib/xBé_64-linux-gnu/libd)
16.22-Debian.so:dns_fwdtable_find { print(retval) }*
Attaching 1 probe...

]

23

23

23

23

23

23

23

root@ebpf-test:~# dig @localhost ns20@a.dnslab.org +short
167.172.136.154

root@ebpf-test:~-# dig Blocalhost isc.org +short
149.20.1.66

rootBebpf-test:-it

Vs

All content © 2021 Internet Systems Consortium, Inc.

Step 3 - Planning the probe script

e Now we are certain that we have a function to work
with, we write a bpftrace script

e The script will
= Store the domain name requested from dns fwdtable find
when the function is called
» Check the return code (retval) of the function when it returns,

and print the domain name when the return value is zero (0), do
nothing otherwise

L
)

Challenge - Wrangling with structs

e The domain name to check for forwarding is given to

the function as a struct of type dns name t
= [t's not a simple pointer to a string that we can print

e A search through the ISC BIND 9 source code
documentation reveals the structure of dns name t.

The 2nd field is unsigned char * ndata, which
looks like the domain name

172

Visc

https://users.isc.org/~each/doxygen/bind9/structdns__name.html

Challenge - Wrangling with structs

e The definition of dns name t can be found in
lib/dns/include/dns/name.h

dns_name {
magic;
ndata;

length;
Labels;
attributes;
offsets;
isc_buffer_t buffer;
ISC LINK(dns name t) link;
ISC_LIST(dns_rdataset_t)} list;

L
)

Challenge - Wrangling with structs

e bpftrace uses a syntax similar to the C programming

language, we can import the struct from the BIND 9

source code into the script

= we don't need the linked list and the isc_buffer t fields for our

script, and these are not native types, so we comment these lines
out

#1/usr/bin/bpftrace

struct dns_name {
unsigned int magic;
unsigned char *ndata;
unsigned int length;
unsigned int labels;
unsigned int attributes;
unsigned char *offsets;

// isc_buffer t *buffer;
// ISC_LINK(dns_name_t) link;

// ISC_LIST(dns_rdataset t) list;

el

‘@ All content © 2021 Internet Systems Consortium, Inc

172

Printing a message at probe start

e The BEGIN pseudo-probe fires at the start of the script

and prints a message, informing the user that the
script has been started

[---1
BEGIN
{
print("Waiting for forward decision...\n");
}
[...]

172

Visc

Probing the function call

e This probe fires when the function is called

» jt's a uprobe (User-Space probe)

= the function to be probed is dns fwdtable find in the dynamic
library /1ib/x86 64-linux-gnu/libdns-9.16.22-
Debian.so

= The 2nd argument to the call (argl) is cast into a struct
dns name, and then the field ndata is referenced

= This data is stored into the variable @dns name[tid] indexed by
the thread ID (tid) of the running thread

el
probe:/1ib/x86 64-linux-gnu/libdns-9.16.22-Debian.so:dns fwdtable find

@dns_name[tid] = ((struct dns name *)argl)->ndata

[
u
{
}
[

eee]

172

‘m All content © 2021 Internet Systems Consortium, Inc.

Probing the function exit

e The 3rd probe is firing at function exit (uretprobe - User-space

function return probe)
= Same library and function as before

e |f the return value of the function is zero 0 (domain name needs to be
forwarded), the stored data in @dns name[tid] is converted into a
string and printed out

e The variable @dns name[tid] is deleted as it's not needed any

uretprobe:/1lib/x86_64-linux-gnu/libdns-9.16.22-Debian.so:dns_fwdtable find
{
if (retval == 0) {
printf("Forwarded domain name: %s\n", str(@dns_ name[tid]));

}
delete(@dns_name[tid]);

5 -

All content © 2021 Internet Systems Consortium, Inc.

The final script

#!/usr/bin/bpftrace

struct dns_name {

//
//
//

}i

BEGIN

{
}

unsigned int magic;
unsigned char *ndata;
unsigned int length;
unsigned int labels;
unsigned int attributes;
unsigned char *offsets;
isc_buffer t *buffer;
ISC_LINK(dns_name t) link;
ISC_LIST(dns_rdataset t) list;

print("Waiting for forward decision...\n");

uprobe:/1ib/x86 64-linux-gnu/libdns-9.16.22-Debian.so:dns_fwdtable find

{
}

@dns_name[tid] = ((struct dns name *)argl)->ndata

uretprobe:/1lib/x86_64-linux-gnu/libdns-9.16.22-Debian.so:dns_fwdtable find

{

if (retval == 0) {

}

printf("Forwarded domain name: %s\n", str(@dns_name[tid]));

delete(@dns_name[tid]);

172

Visc

All content © 2021 Internet Systems Consortium, Inc.

The script In operation

The script fires whenever a domain name is to be

forwarded
= |n this example, all queries for the domain dnslab.org are
forwarded, but not ietf.org

root@ebpf-test:-# ./forward.bt
Attaching 3 probes...
Waiting for forward decision...

Forwarded domain name: zoneZ2@3dnslaborg
Forwarded domain name: dnslaborg
Forwarded domain name: dnslaborg
Forwarded domain name: dnslaborg
Forwarded domain name: dnslaborg

root@ebpf-test:-i# dig zone203.dnslab.org +short
137.184.150.214

root@ebpi-test:~# dig ietf.org +short
4.31.198.44

root@ebpf-test:-i

All eentent ® 2021 Internet S8ystems Consertium, Ine,

BIND Q)

Packet Filtering with eBPF

z
I
o
3
B
2
)
N
IS]
N
=)
]
3
o
)
<
@
@
3
e
Q
g
3
(73
3
=
c
3
5
o

eBPF as a network firewall

 eBPF can be a very efficient firewall
= |t can stop network packets before they enter the Linux TCP/IP
stack or the userspace application
= As eBPF runs full programs, the firewall can work on complex

rules

DNS query names

DNSSEC data in answers

Source IP of nameserver

EDNS data (prioritize DNS messages with DNS cookies)

o o o o o

L
)

Example: Block-Non-DNS

e In the Hands-On part of this training, we show a

simple eBPF network filter
= Block all UDP traffic towards a network interface except DNS (Port
53)
= Helps in non-DNS DDoS attacks against an authoritative DNS
server

L
)

Example: XDP Firewall

 The XDP Firewall is a new project to create a firewall

tool leveraging XDP
= https://github.com/gamemann/XDP-Firewall
= Example rule-set to block all DNS traffic on Port 53

interface = "eth0";
updatetime = 15;

filters = (
{
enabled = true,
action = 0,
udp_enabled = true,
udp dport = 53

All eentent ® 2021 Internet Systems Congertium, Ine,

https://github.com/gamemann/XDP-Firewall

Literature and Links

z
I
o
3
B
2
)
N
IS]
N
3
]
3
o
)
<
@
@
3
e
Q
g
3
(73
3
=
c
3
5
o

5

BIﬁD@I
Book: Linux Observability with BPF

By David Calavera, Lorenzo Fontana (November
2019)

O'REILLY

Linux
Observability
with BPF

Advanced Programming for Performance
Analysis and Networking

David Calavera &
4 Lorenzo Fontana
Foreword by Jessie Frazelle

BIF]D@I
Book: Systems Performance (2nd ed.)

By Brendan Gregg (December 2020)

dystems
Performance

Enterprise a

Book: BPF Performance Tools

By Brendan Gregg (December 2019)

BPF

Performance Tools

I
-
)
T

.......

L LA
pui
...........

S35 DMILAAWOD TVROISSII0HEd AJTSIMNC

Links

e For the webinar we have a extensive list of links that
can be found at
https://webinar.defaultroutes.de/webinar/08-ebpf-
links.html

https://webinar.defaultroutes.de/webinar/08-ebpf-links.html

N

Next webinars

e December 15 - DNS Fragmentation: Real-World
measurements, impact and mitigation

Questions and Answers

N

Hands-On

e \WWe have prepared a VM machine for every participant

e Find the instructions at
https://webinar.defaultroutes.de/webinar/08-ebpf-
workshop.html

https://webinar.defaultroutes.de/webinar/08-ebpf-workshop.html

